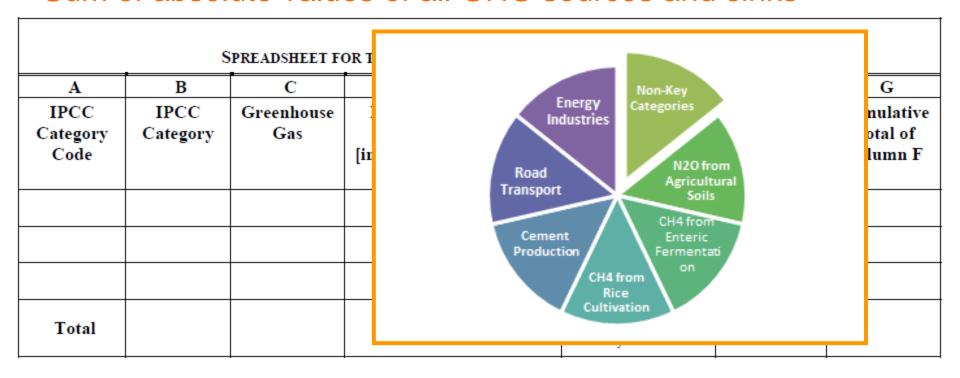
Climate MRV for Africa – Phase 2 Development of National GHG Inventory: Key Category Analysis (KCA)

Project of the European Commission DG Clima Action

EuropeAid/136245/DH/SER/MULTI


Amr Osama Abdel-Aziz, Assen Gasharov, Mike Bess and Laura Lahti Team Leader and Key Experts January 2017

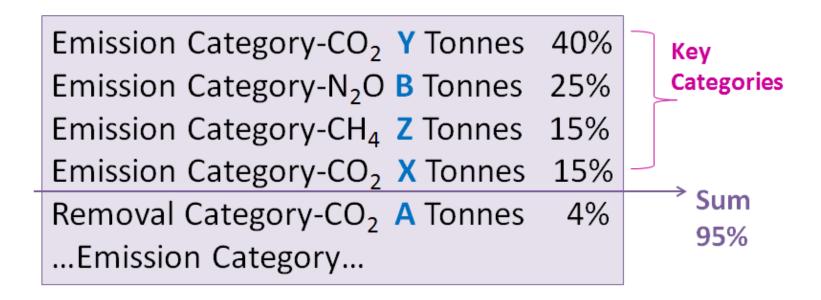
Key categories - Identification

- Purpose of key categories:
 - Identify where most GHG emissions & removals are
 - Focus (limited) compilation resources
 - Aim to apply higher Tiers methods
 - Ensure greater QA/QC
- by GHG volumes (Tier 1): <u>Level</u> & <u>Trend</u> assessment
- by Uncertainty (Tier 2): <u>Level</u> & <u>Trend</u> assessment
- Qualitative criteria assessment

Level assessment – for a single year (t) (baseline & latest)

Absolute value of GHG source or sink divided by Sum of absolute values of all GHG sources and sinks

Aggregation in descending order up to 95% (Tier 1)


Step 1 – List all inventory categories to be included

Emission Category-CO₂ X Tonnes Emission Category-CO₂ Y Tonnes Emission Category-CH₄ Z Tonnes Removal Category-CO₂ A Tonnes Emission Category-N₂O B TonnesEmission Category...

Step 2 – Sort in descending order by contribution to total

```
Emission Category-CO<sub>2</sub> Y Tonnes 40%
Emission Category-N<sub>2</sub>O B Tonnes 25%
Emission Category-CH<sub>4</sub> Z Tonnes 15%
Emission Category-CO<sub>2</sub> X Tonnes 15%
Removal Category-CO<sub>2</sub> A Tonnes 4%
....Emission Category...
```

Step 3 – Sum cumulative contribution of sources/ sinks (absolute in descending order) until you reach 95%

Key categories – Trend assessment

- Complements the Level assessment
- Compares 2 inventory years to establish a trend

TABLE				
SPREADSHEET FOR THE APPROACH 1				
A	В	C	D	
IPCC	IPCC	Greenhouse	Base Year	Late
Category	Category	Gas	Estimate	Es
Code			$\mathbf{E}_{x,0}$	
Total				

Identifies smaller categories with significantly different trends

Aggregation in descending order up to 95% (Tier 1)

Key categories – Uncertainty assessment

- Tier 1 Sources and sinks are sorted and ranked according to contribution to the inventory trend
- Tier 2 Same as Tier 1 but accounting for uncertainty:

Activity Data uncertainty

Emission Factor uncertainty

Key categories - Qualitative criteria

Indentifying categories where:

- Mitigation actions envisaged (monitoring & reporting)
- Expected emissions growth
- Uncertainties not yet quantified, but presumed high
- Not yet included in inventory (completeness)

Key Categories Analysis – Exercise

Key Categories Analysis – Exercise

- Open the US EPA KCA Tool and complete Steps 1 & 2
- Use Egypt data file for categories and values
- Step 1: chose '2006 Guidelines'
 - tick all categories from the Egypt data file
- Step 2: Base year: 2005 / Current year: 2016
 - tick 'Gg CO2 Eq.'
 - copy-paste data from Egypt data file
 - (NB: in chunks by Sector!)
- Go to Step 5 to start reviewing results

Thank you!

Amr Osama Abdel-Aziz, Assen Gasharov, Mike Bess and Laura Lahti